

SIGNUS ECOVALOR: Datos relevantes

Estimaciones del mercado	2006	2007
Mercado de reposicón Ø<1400	218.000 t	224.000 t
Mercado de reposicón Ø>1400	13.000 t	13.000 t
Importación de usado	12.000 t	12.000 t
Recauchutado	38.000 t	38.000 t
Vehículos fuera de uso	40.000 t	40.000 t
Total	321.000 t	326.000 t
Responsabilidad de Signus (Ø<1400)		210.000 t

Hacia una nueva rodadura

INSTALACIONES DE GESTIÓN: PRESENTES Y FUTURAS *Centros de recogida Instalaciones de granulación Instalaciones con entrada en funcionamiento en 2007/2008 Hacia una nueva rodadura > SIGNUSS

PROPIEDADES DEL NEUMÁTICO

□ PRESENTACIÓN

ENTERO: Densidad = 100 kg/m3.

TRITURADO: de forma irregular con tamaños: 300 y 25 mm.

- Densidad sin compactar = 390 535 kg/m3.
- Densidad compactado = 630 840 kg/m3.

REDUCIDO A GRÁNULOS/ POLVO:

- Partículas \emptyset < 5 mm y \emptyset < 0,8 mm respectivamente .

□ PROPIEDADES FÍSICAS:

- Permeabilidad (Conductividad hidráulica).
- Peso reducido, alto contenido en huecos.
- Baja capacidad de compactación.

FUENTE: Ficha técnica del NFU

dacia una nueva rodadura > SIGNIS

NFU EN INGENIERÍA CIVIL

PROPIEDADES DEL NEUMÁTICO

□ PROPIEDADES QUÍMICAS :

- Baja reactividad frente a gases y líquidos.
- Baja biodegradabilidad.
- Resistente a la intemperie.
- Alto poder calorífico (6.500 y 8.000 kcal/Kg)
- Alto contenido en Carbono

□ PROPIEDADES MECÁNICAS:

- Elevada resistencia al corte.
- Absorbente de vibraciones.
- Flexibilidad.

Hacia una nueva rodadura

SIGNUS

APLICACIONES DEL NEUMÁTICO FUERA DE USO (NFU) EN INGENIERÍA CIVIL

Hacia una nueva rodadura >

SIGNUS

MEZCLAS BITUMINOSAS

VENTAJAS TÉCNICAS

- Menor susceptibilidad a la temperatura que las mezclas convencionales. (aumenta su elasticidad y resiliencia a temperaturas elevadas).
- Mayor resistencia al agrietamiento, tanto por fatiga como por reflexión.
- Mayor resistencia al envejecimiento y a la oxidación que las mezclas convencionales.
- Aumenta la viscosidad del ligante, lo que proporciona películas más gruesas de betún.

SEGURIDAD VIAL

- Mejora la adherencia de los vehículos en el asfalto.
- Prolongación del tiempo de contraste de las marcas.

FUENTE: Manual empleo de caucho de NFU en mezclas bituminosas.

Hacia una nueva rodadura >

TANQUES DE TORMENTA

CARACTERÍSTICAS

Presentación y tamaño del producto	NFU TRITURADO 80-120 mm		
	NFU ENTERO		
Densidad Aparente	500 kg/m^3		
% huecos	64%		
Conductividad hidráulica K	5·10 ⁻⁶ – 0,55 m/s (dependiendo presión)		

FUENTE: DRAINGOM

cia una nueva rodadura > SIGNIS

NFU EN INGENIERÍA CIVIL

RELLENO DE TERRAPLENES

DESCRIPCIÓN

El uso de NFU como relleno de terraplenes es una REALIDAD en EEUU, donde se han llevado a cabo numerosos proyectos.

CARACTERÍSTICAS DE NFU

- □ PESO REDUCIDO
- PERMEABILIDAD
- RESISTENCIA ELEVADA

Presentación y tamaño del derivado del neumático

NFU TRITURADO 75-300 mm

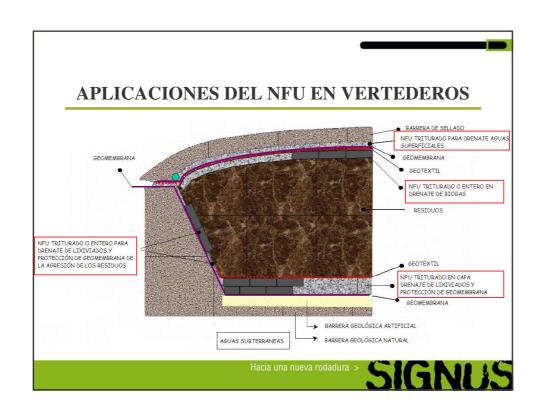
FUENTE: CALIFORNIA INTEGRATED WASTE MANAGEMENT, 2006.

MUROS DE CONTENCIÓN

DESCRIPCIÓN

- La utilización de NFU como relleno de muros de contención reduce el empuje soportado por dicho muro.
- Permite circulación agua
- De aplicación en numerosos países.

CARACTERÍSTICAS DE NFU


- □ PESO REDUCIDO
- □ CAPACIDAD DRENANTE
- RESISTENCIA ELEVADA

Presentación y tamaño del producto

NFU TRITURADO 75-300 mm

FUENTE: CALIFORNIA INTEGRATED WASTE MANAGEMENT, 2006.

HORMIGÓN

CARACTERÍSTICAS

- Reducción de peso.
- Reducción del agrietamiento por retracción.
- Aumento de la resistencia al impacto.
- Mejora de la capacidad de aislamiento acústico.
- Modificación de su aspecto estético.

APLICACIONES

- Losetas para zonas de alta montaña.
- Bloques de construcción de aislamiento acústico.
- Losetas para revestimiento de exteriores.
- Bordillos de hormigón

Presentación y tamaño del producto Granza de distinta granulometria

Cantidad de caucho 3,5% y 5% (puede alcanzarse 8%)

FUENTE: CENTRO CATALÀ DEL RECICLATGE

Hacia una nueva rodadura >

NFU EN INGENIERÍA CIVIL 17

NFU EN INGENIERÍA CIVIL

20

APLICACIONES EN CONSTRUCCIÓN DEPORTIVAS Y OCIO

CESPED ARTIFICIAL

Empleado como relleno de campos deportivos de césped artificial. Empelo en forma de granulado de $1 < \emptyset > 2,5$ mm

VENTAJAS

- Se puede colocar sobre clase de terreno.
- Ahorro en los costes de mantenimiento y de consumo de agua.
- Resistencia climática.
- Acabado limpio y cómodo para los usuarios.
 Prevención de lesiones

Hacia una nueva rodadura >

NFU EN INGENIERÍA CIVI

CONCLUSIONES GENERALES DE LA APLICACIÓN EN INGENIERÍA CIVIL

- Reducción del nivel sonoro por rodadura.
- Se cumple el principio de jerarquía de gestión de los residuos.
- Posibles ahorros materiales (disminución espesores de capa):

VENTAJAS ECONÓMICAS

> VENTAJAS TÉCNICAS

- Prolongación de la vida de servicio (en carreteras).
- Reducción de costes en numerosas aplicaciones.
- Gran capacidad drenante.
- Peso reducido.
- Absorbente de vibraciones.
- Baja capacidad de compactación.
- Elevada resistencia al corte.

Hacia una nueva rodadura >

VALORIZACIÓN DE NEUMÁTICOS FUERA DE USO EN HORNOS DE ARCO ELÉCTRICO

Hacia una nueva rodadura

NFU EN HORNOS DE ARCO ELÉCTRICO 3 FASE 1: EXPERIMENTACIÓN EN EL LABORATORIO Se hicieron ensayos a nivel laboratorio que simularan la pirólisis y oxidación de Muestra neumáticos en un horno de arco eléctrico (EAF) Analizadores en línea de CO, CO2, VOCs en las siguientes Gas atmósfera condiciones: • T=500, 900, 1100°C Proceso de pirólisis y oxidación en el laboratorio • aire y mezcla de N₂- CO_2

NFU EN HORNOS DE ARCO ELÉCTRICO 4

CONCLUSIONES FASE 1

- > Es posible operar sin incidentes.
- Se han analizado varios métodos de introducción.
- En condiciones óptimas no tiene efectos ambientales apreciables.

Hacia una nueva rodadura > 536 NJ 35

.

FASE 2: IMPLANTACIÓN INDUSTRIAL

- Los experimentos se llevaron a cabo en la acería LME (Trith-Saint-Léger, Francia) con los siguientes objetivos:
 - > Operar con distintas cargas de neumáticos en el EAF.
 - Evaluar las emisiones en la planta (salud) y la chimenea (medio ambiente).
 - > Estimar la relación de sustitución del carbón por los neumáticos.
 - > Definir un procedimiento operativo
- > Parámetros a optimizar:
 - > Presentación del neumático.
 - > Cantidad de neumático utilizado.
 - > Reglas de incorporación del neumático

dacia una nueva rodadura > SIGNIS

NFU EN HORNOS DE ARCO ELÉCTRICO 7

FASE 2: PROCEDIMIENTO OPERATIVO

- > Seguimiento exacto de la cantidad de neumáticos que se introducen.
- > Correcta alimentación de los neumáticos al horno.
- Adaptación de las condiciones de post-combustión a las nuevas circunstancias, para conseguir una combustión completa a CO₂.

Hacia una nueva rodadura :

NFU EN HORNOS DE ARCO ELECTRICO

FASE 2: RESULTADOS

- > Presentación óptima de los neumáticos

TROCEADOS 150 x 150 mm

- ➤ La relación de sustitución está entre 1,5 y 1,7 kg de neumático por 1 kg Carbón.
- > El calor generado en el horno por la antracita o por los NFU no presenta ninguna diferencia.
- > Azufre: sin variaciones sobre combustibles convencionales y por tanto sin influencia en la producción de acero.

Hacia una nueva rodadura >

NFU EN HORNOS DE ARCO ELÉCTRICO 9

FASE 2: RESULTADOS

- > EMISIONES AL MEDIO AMBIENTE: controles a través de terceras partes, con los siguientes resultados:
 - > SISTEMA DE EXTRACCIÓN: ninguna incidencia sobre VOCs o SO₂.
 - CHIMENEA: no se detecta PAH, BTEX y PCDD/F.
 - ESCORIAS: no se detecta la presencia de C, S, Cd, Zn, Pb, TMS y PAH.

Hacia una nueva rodadura >

NFU EN HORNOS DE ARCO ELÉCTRICO

2. VENTAJAS DE UTILIZAR NFU

- 1. COMPOSICIÓN DEL NEUMÁTICO.
- 2. EMISIONES DE CO₂.
- 3. EMISIONES DE NOx.
- 4. POTENCIAL DE AHORRO

Hacia una nueva rodadura >

SIGNUS

VENTAJAS DE UTILIZAR NFU

NFU EN HORNOS DE ARCO ELÉCTRICO 11

I. COMPOSICIÓN DEL NEUMÁTICO 📵

> ACERO EN EL NEUMÁTICO:

El neumático aporta una cantidad de acero de muy alta calidad que puede incorporarse en el proceso de producción.

El porcentaje medio de acero en el neumático es 15%

7000 t /año de NFU

1540 t /año de acero

APORTACIÓN DE MATERIAI

VENTAJAS DE UTILIZAR NFU

NFU EN HORNOS DE ARCO ELÉCTRICO 15

EMISIONES DE CO₂

Directiva 87/2003 EC (cuotas de emisiones):

EL CO₂ QUE PROVIENE DE LA COMBUSTIÓN DE FUENTES DE ENERGÍA NATURAL (BIOMASA) NO COMPUTA

SIGNUS está trabajando con la administración para que se admita la no contribución del CO₂ debido al caucho natural.

LA COMBUSTIÓN DE 1 TONELADA DE NEUMÁTICO, SUPONE 441,15 Kg DE CO, QUE PODRÍAN ESTAR LIBRES DE LAS CUOTAS DE EMISIÓN

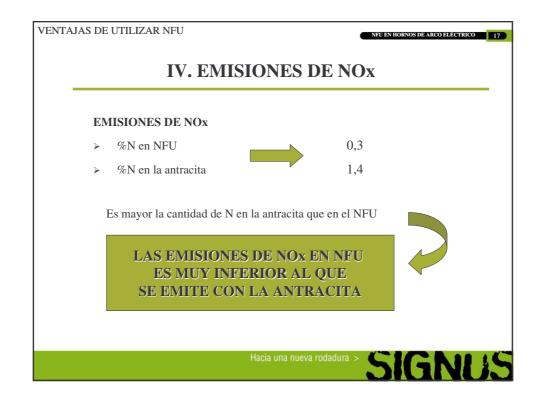
Hacia una nueva rodadura

VENTAJAS DE UTILIZAR NFU

NFU EN HORNOS DE ARCO ELÉCTRICO 16

III. FACTORES DE EMISIÓN Y DE OXIDACIÓN

COMPOSICIÓN ELEMENTAL


TIPO DE COMBUSTIBL E	FACTOR DE EMISIÓN Kg CO ₂ /GJ _{PCI}	FACTOR DE OXIDACIÓN IMPLÍCITO (1)	PCI GJ/t
ANTRACITA	96,3	0,98	30,26
COQUE DE PETROLEO	98,3	0,99	32,5
NFU	82	0,98	31,39

(1) Factor de oxidación implícito: valor ya incorporado en el factor de emisión

EMISIONES CO₂ = Combustible consumido x PCI x factor de emisión x factor de oxidación

Hacia una nueva rodadura >

